NCK

쇼크킬러 · 고정식

● 관련기기

개 요

쇼크킬러 NCK는 SCK와 달라 추력에너지의 흡수에 최적한 충격완충장치입니다. 구조에 어렵다고 되어 있던 슬릿오리피스 방식을 채용하고, 저속역에 있어서의 높은 흡수능력, 리니어한 소프트정지등을 실현했습니다. 거기에 컴팩트슬림설계이므로 성스페이스로 FA시스템 구성에 기능합니다.

트 즈

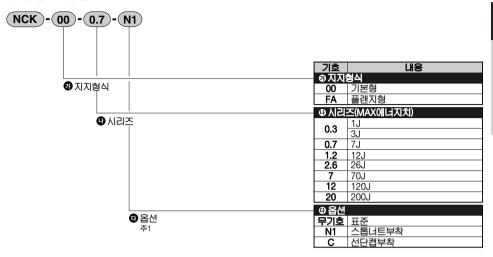
●추력에너지에 대응

실린더 등의 추력에너지의 흡수에 위력을 발휘합니다. 정지도 극대화된 소프트 터치입니

- **저속에서도 매끄러운 흡수** 저속에 대하여 특히 우수하여 매 끄러운 충격흡수가 가능합니다.
- **컴팩트해도 흡수가 큼** 컴팩트 슬림설계이면서 흡수에너 지가 커 공간효율이 큰상품입니다.
- **전스트로크 사용가** NCK는 풀스트로크 사용가능
- 부착이 심플, 리니어한 소프트정지 기종이 풍부 흡수에너지에서 8타입을 준비. 용 도에 맞추어 선택합니다.

CONTENTS

●NCK(최대흡수에너지 1~200J)	A-673
쇼크킬러 기종선정가이드	A-679


쇼크킬러 NCK Series

●최대흡수에너지: 1~200J

■ 사양

항목			NCK									
시리즈		0.1	0.3	0.7	1.2	2.6	7	12	20			
형식·분류		어져스트없이 스프링복귀형										
최대흡수에너지	J	1	3	7	12	26	70	120	200			
스트로크	mm	4.5	6	8	10	15	20	25	30			
시간당 최대흡수에너지	KJ/XI	4.8	6.3	12.6	21.6	39.0	84.0	86.4	108.0			
최대충돌속도	1.0	1	.5	2.	.0	2.5	3.0					
최대반복빈도	최대반복빈도 회/min		35	30		25	20	12	9			
주위온도	Ç				-10	~80						
연결대필요강도	Ν	1450	3540	6150	8400	12100	24400	33500	47000			
리턴시간 S				0.3이하	0.40	0.5이하						
제품중량	kg	0.009	0.012	0.02	0.04	0.07	0.2	0.3	0.45			
리턴스프링함	시장시 N	3.	.0	2.0	2.9	5.9	9.8	16	5.3			
4C_288	압축시 N	4	.6	4.3	5.9	11.8	21.6	33.3	33.9			

■ 형번표시방법

▲ 형버선정시주의사항

●주1: N1사양품에는 육각너트3개 부착 으로 됩니다.

<형번표시예>

NCK-00-0.7-N1

기종 : 쇼크킬러 ②지지형식 : 기본형 ⑤시리즈 : MAX에너지 ⑥옵션 : 스톱너트부착

■ 부속부품형번표시방법

●플랜지브라켓트(1개)

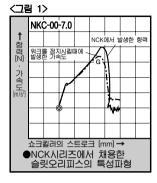
NCK)-(0.7)-(FA)

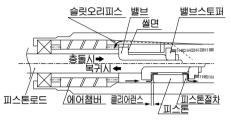
●스톱너트+육각너트(각1개)

NCK)-(0.7)-(N1)

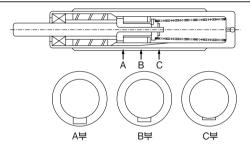
●육각너트(1개)

NCK - (0.7) - (NT)

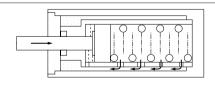

기호	시리즈(MAX에너지치)
0.3	1J
0.3	3J
0.7	7J
1.2	12J
2.6	26J
7	70J
12	120J
20	200J


■ 작동설명

①충돌시

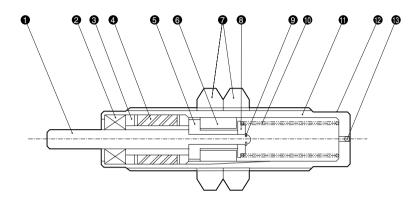

워크가 피스톤로드에 충돌할 때, 동시에 피스 톤이 밀러들이가 튜난비의 오일을 가압합니다. 가압된 오일은 당사독자의 슬릿오리피스구를 통과하고 에어챔버가 있는 유실의 쪽으로 흘 러 들어감니다. 피스톤은 실린더의 추력, 워크 의 지중등으로 결국 밀려 들어갑니다만 피스 톤의 이동과 같이 슬릿오리피스의 면적도 서 서히 작아지므로 결국 높은 항력을 발생합니 다. 이 일련의 동작이 연속적으로 일어나서 워 크를 매끄럽게 정지시킵니다.

②복귀시

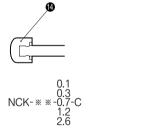


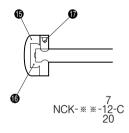
■ 구조설명

1. 슬릿오리피스는 위 그림처럼 피스톤의 이동과 같이 오리피스 면적이 매끄럽게 변화하는(작아지는) 구조입니다. 이 구조는 유압식 댐퍼로서는 이상적인 "정지"를 실현하는 것으로 알려졌습니다만, 구조가 어려워서 탄사의 제품에는 지금까지 채용되지 않았습니다. CKD에서는 이러한 난제에 도전해서 <그림 1>처럼 리니어한 정지성능을 확립했습니다.



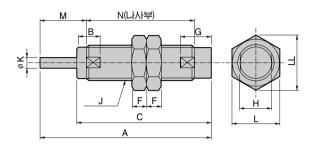
2. 피스톤의 이동과 같이 오리피스 면적이 변화하는 구조로서는 위그림 처럼 2중튜브를 사용하는 것이 일반적입니다. 안의 파이프에 복수의 작은 오리피스 구멍을 설계, 피스톤의 이동에 따르는 오리피스 구멍을 닫아갑니다. 이 구조로는 구멍위치정도의 성능이 크게 좌우되는 것 뿐 아니라, <그림 2>처럼 오리피스에 항력이 변화하므로 매끄럽게 결여된 특성으로 됩니다.



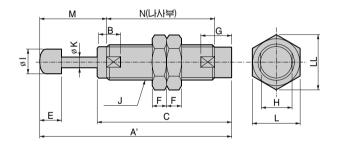

■ 내부구조및부품리스트

●기본형(선단캡없음)

●선단캡부착

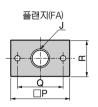

■ 부품리스트

품번	부품명칭	재질	비고	품번	부품명칭	재질	비고
1	로드	강	공업용크롬도금	10	스프링	피아노선	
2	오일씰	특수니트릴고무		11	댐퍼케이스	강	흑색크롬도금
3	로드가이드	동합금		12	라벨	폴리에스테르필름	
4	에어챔버	니트릴고무		13	볼	합금강	
5	밸브	강		14	댐퍼쿠션	폴리아미드수지	흑색
6	피스톤	주철		15	댐퍼쿠션	폴리에스테르수지	흑색
7	육각너트	강	흑색아연도금	16	쿠션스토퍼	강	흑색아연도금
8	밸브스토퍼	강		17	육각홀부착정지나사	강	
9	E형정지축	스프링용 강	아연도금				

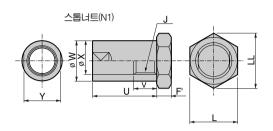


■ 외형치수도

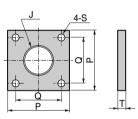
●표준(NCK-※※-※※)

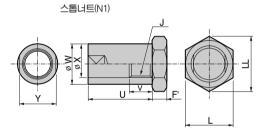


●선단캡부착(NCK-※※-※※-C)



기호																
형번	Α	A'	В	С	E	F	G	Н		J	K	L	LL	М	M'	N
NCK-00-0.1	34.5	40.5	4	29.5	6	4	7	7	6	M8×0.75	2.8	12	13.9	6	12	23
NCK-00-0.3	45	51	7.5	39	6	4	8	7	7	M8×0.75	2.8	12	13.9	10.5	16.5	29.5
NCK-00-0.7	50	57	7.5	42	7	4	9	9	8	M10×1.0	3	14	16.2	13	20	31
NCK-00-1.2	57.5	65	8.5	47.5	7.5	5	11	11	10	M12×1.0	3.5	17	19.6	15	22.5	35.5
NCK-00-2.6	86	96	10.5	71	10	5.5	14	13	12	M14×1.5	5	19	21.9	20	30	58
NCK-00-7	98.5	109.5	12.5	78.5	11	8	18	19	16	M20×1.5	6	27	31.2	25	36	63.5
NCK-00-12	129	142	15.5	104	13	10	23	24	22	M25×1.5	8	32	37	30	43	87
NCK-00-20	141	154	15.5	111	13	10	25	24	22	M27×1.5	8	32	37	35	48	92


■ 외형치수도 : 옵션(플랜지(지지브라켓트))



기호		지(FA)				스톱너트(N1)					
형번	P	Q	R	S	T	F'	U	V	w	Х	Υ
NCK-00-0.1	42	30	20	5.5	2.3	4	15	8	14	9	12
NCK-00-0.3	42	30	20	5.5	2.3	4	15	8	14	9	12
NCK-00-0.7	42	30	20	5.5	2.3	4	17	10	15	11	13
NCK-00-1.2	46	34	20	5.5	3.6	5	23	10	19	13	17
NCK-00-2.6	52	38	-	6.5	6	5.5	26.5	10	20	15	17
NCK-00-7	52	38	-	6.5	6	8	36.5	15	26	21	24
NCK-00-12	52	38	-	6.5	6	10	35	15	32	26	30
NCK-00-20	52	38	-	6.5	6	10	45.5	15	35	28	32

쇼크킬러 기종선정가이드[1]

1 장치의 충돌패턴을 명확히 합니다.

→a. 단순한 수평충돌 b. 실린더의 추력을 동반하는 충돌 ·c. 모터의 구동력을 동반하는 충돌 수직은통

- d. 자유낙하에 의한 충돌 e. 실린더의 추력을 동반하는 충돌(하강) ·f. 실리더이 추력을 동반하는 충돌(상승)

- g. 자유활주에 의한 충돌 경사운동 · h. 실리더의 추력을 동반하는 충돌(하강) ·i. 실린더의 추력을 동반하는 충돌(상승)

- i. 자유요동낙하에 의한 충돌 휘 욡 k. 모터등의 토르크를 동반하는 충돌(요동) 모터등의 토르크를 동반하는 충돌(회전)

2 에너지 산출에 필요한 조건 · 항목을 명확히 합니다.

F=전흡수(베너지(J) E1=운동에너지(J) E2=추력 · 자중에너지(J)

L=충돌물이동거리(m) (경사자유낙하) R=회전중심부터 충돌점까지의 거리(m) r=회전중심부터 중심까지의 거리(m)

F=압입력(N) g=중력의 가속도9.8m/s² ω=각속도(rad/s) J=관성모멘트(kg·m²) D=직경(m) N=회전수(rpm) Me=충돌물상당 중량(kg)

M=충돌중량(kg)

V=충돌속도(m/s)

S=NCK스트로크(m)

H=낙하높()(m) Td=모터기동토르크(N·m) K=감속비 θ. α. β=경사각(deg)

■ 충돌패턴그림예

G=중심위치

		수평충돌			수직충돌		
	a. 단순한수평충돌	b. 실린더의 압입력 발생시	c. 모든이 안인력 발생시	d. 자유낙하	e. 실린더 하한 스톱	f. 실리더 산하 스톰	
사용에	V M	F V M	Td v	H _↓ M ↓V	Ş↓F M ↓V	M tv	
운동에너지 E ₁ (J)	$\frac{1}{2} \cdot M \cdot V^2$	$\frac{1}{2} \cdot M \cdot V^2$	$\frac{1}{2} \cdot M \cdot V^2$	$\frac{1}{2} \cdot M \cdot V^2$	$\frac{1}{2} \cdot M \cdot V^2$	$\frac{1}{2} \cdot M \cdot V^2$	
추력·자력에너지 E2(J)	F·S		$2 \cdot \frac{K}{D} \cdot Td \cdot S$	M·g·S	(M · g+F) · S	$(F-M \cdot g) \cdot S$	
전흡수에너지 E(J)	E=E ₁	E=E ₁ +E ₂	E=E ₁ +E ₂	E=E ₁ +E ₂	E=E1+E2	E=E ₁ +E ₂	
E(J) 충돌물상당중량 Me(kg)	Me=M Me= $\frac{2 \cdot E}{V^2}$		Me= $\frac{2 \cdot E}{V^2}$	$Me = \frac{2 \cdot E}{V^2} (V = \sqrt{2 \cdot g \cdot H})$	Me= $\frac{2 \cdot E}{V^2}$	Me= $\frac{2 \cdot E}{V^2}$	
		경사충돌		요동	회전충돌		
	g. 자유낙하	h. 실린더의 압입력 발생시	i. 실린더의 압입력 발생시	j. 자유낙하	k. 모터등의 토르크가 있을시	I. 모던등의 토르크가 있을시	
사용예	M	F V	E N	M A	M T	T P R	
운동에너지 E ₁ (J)	$\frac{1}{2} \cdot M \cdot V^2$	$\frac{1}{2} \cdot M \cdot V^2$	$\frac{1}{2} \cdot M \cdot V^2$	M⋅g⋅H	$\frac{J \cdot \omega^2}{2} = \frac{1}{2} \cdot M \cdot V^2$	$\frac{\mathbf{J} \cdot \mathbf{\omega}^2}{2} = \frac{\mathbf{M} \cdot \mathbf{D} \cdot \mathbf{\omega}^2}{16}$	
E1(J)	2						
추력·자력에너지	M·g·S·sin ∂	(M ⋅ g ⋅ sin 0 +F) ⋅ S	$(F-M \cdot g \cdot \sin \theta) \cdot S$	$\frac{r}{R} \cdot M \cdot g \cdot S$	$\frac{T}{R} \cdot S$	$\frac{T}{R} \cdot S$	
추력 · 자력에너지 <u>E₂(J)</u> 전흡수에너지 E(J)			E=E ₁ +E ₂	$\frac{r}{R} \cdot M \cdot g \cdot S$ $E = E_1 + E_2$ $Me = \frac{2 \cdot E}{V^2} \left(V = \frac{R}{r} \sqrt{\frac{3 \cdot g \cdot H}{2}}\right)$	E=E ₁ +E ₂	E=E ₁ +E ₂	

3 쇼크킬러의 사양범위의 항목에 대해서 확인

a. 최대반복회수 b. 최대충돌속도 (회/min) (m/s) c. 주위온도 d. 리턴시간

(°C)

주 : 충돌패턴 그림예를 참조하세요.

4 「충돌패턴 그림 예」에 따라 실제의 에너지를 계산

●기호설명

E=전흡수에너지 J E1=운동에너지 J

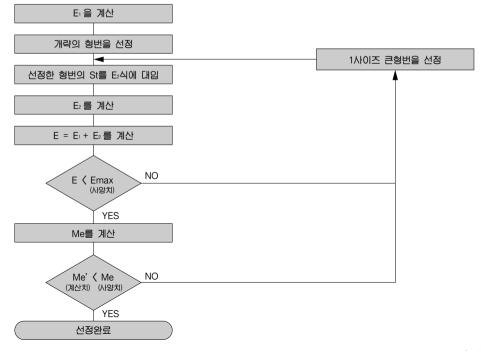
E2=추력 · 자중에너지 J

b. 추력·자중에너지 ········[충돌패턴그림예 I에 따라 E2의 치를 계산합니다만, 계산식 중의 S(NCK의 스트로크)에 대해서는 최대흡 수에너지가 Ei을 상회하는 기종을 선정하고, 그 형번

에서의 S를 대입합니다.

c. 전흡수에너지 ······그후, 계산의 결과가 Emax(최대흡수에너지)를 상회 하면 먼저선택한 형번보다 1사이즈 큰 NCK를 선택. 다시 계산합니다. 계산에서 얻은 E의 치가 여기에서

선택한 형번보다 하회하면 OK입니다.

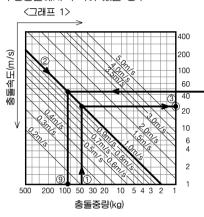

5 충돌물 상당 중량에 대해서 확인

Me=충돌물 상당 중량[ka]

- ●주 : 충돌물상당 중량은 추력 등을 동반해서 운용하는 물체에 있어서도 그것이 전부 운동에너지만으로 있는지를 생각한 경우의 물질에 상당합니다. 에너 지의 계산식만으로는 극히 저속의 조건시, 워크중 량이 이상하게 크게 되므로 충돌물 상당 질량을 사 용하는 부하를 제한하고 있습니다.
- a. 충돌패턴 그림예에 따라 Me의 치를 계산합니다.
- b. 4에서 선정한 형번에 있어 Me(카다로그치)와 a의 계산결과로 부 터 이번의 조건에 있는 Me가 선정한 기종의 Me의 범위내(Me의 계산치 < Me의 사용치)에 있으면 사용 가능합니다.
- c. b에 있어 선정한 기종 Me범위를 초과한 경우는 1사이즈 큰 NCK 를 선정, 같은 방법으로 확인을 합니다.
- ●주 : 충돌물상당 중량(Me)는

페이지에 기재되어 있습니다.

6 4 · 5의 계산에 대해서 플로우차트로써 정리하면 다음과 같이 된니다.



쇼크킬러 기종선정가이드(2)

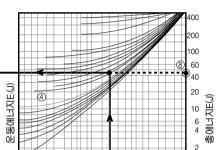
쇼크킬러의 기종선정에는 (1)처럼 전부계산해서 구하는 방법에 가해서 그래프에 의해 구하는 방법이 있습니다. 에너지치 등의 계산서중의 치를 파악할 필요가 없는 경 우는 이 그래프를 사용하면 무척 능률적으로 기종선정이 가능합니다. 본 그림예의 조건 : 추력을 동반하는 수평충돌 m=50kg, V=1.0m/s 실린더내경Ø50 공급압력=0.5MPa

■ 에너지계산그래프

●수평충돌에서 추력이 있는 경우

- a) 충돌중량 M(kg)을 결정한다.…①
- b) 충돌속도(m/s)…②
- c) M과 V의 교점③이 운동에너지 E1(J)입니다.…③
- d) ③을 연장하고 <그래프 2>와 연결하고, 그림 중의 곡선을 참고로 같은식으로 곡선을 그린 다.(점선)…④
- e) 다음에 추력을 동반한 조건의 경우로 있다면 〈그래프 3〉의 우단의 그림표를 사용(실린더 의 내경과 압력에 의해 추력 F(N)을 결정한 다.…⑤
- f) 스트로크 및 최대흡수에너지에 의해 NCK의 형번을 결정한다.…⑥ (최대흡수에너지가 ③에 의해 구한 E1을 상회

(최내읍수에너시가 ③에 의해 구한 E1을 장외하는 형번을 선정해 주세요.)

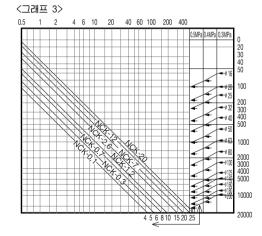

- g) F와 NCK형번의 교점 ①이 추력·자중에너 지 E2(J)입니다.…②
- h) ®점을 연장하고 <그래프 2>와 연결하고 @ 의 곡선과의 교점®이 총에너지 E(=E1+E2) (J)입니다.…® 여기서 E의 치가 (f)에서 선택한 Emax(최대

여기서 E의 치가 ()에서 선택한 Emax최대 흡수에너지)를 상회하도록 되면 다시 NCK의 형번을 1사이즈 크게하여 같은 순으로 E를 구합니다.

i) 여기에서 © 및 ®을 <그래프 1>으로 연장했을 때, V(m/s)과의 교점 ⑨가 충돌물상당 중량 Me입니다.…⑨

여기에서 충돌물상당 중량이 사양치<그래프 4>의 범위내에 있는 것을 확인합니다. (Me가 사양치를 상회하는 경우는 (f)까지 되돌

아와 같은 수순을 반복해 주세요.)

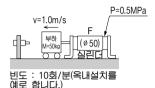


4 6 10

추력 · 자중에너지(M · g)E₂(J)

<그래프 2>

0.5



20 40 60 100 200 400

선정사례

실제의 예를 사용해서 쇼크킬러의 선정을 해봅니다.

에제 아래의 조건에 있어서 부하M을 매끄럽게 정지시키는 쇼크킬러를 선정합니다.

1 장치의 충돌패턴은 "b"에 상당합니다.

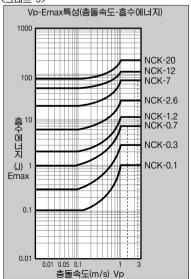
2 계산에 필요한 조건 · 항목을 정리합니다.

a. 충돌물중량 M=50kg

b. 충돌속도 V=1.0m/s

c. 실리더추력 F= π/4×50²mm×0.5MPa=981.7N

3 사양범위에 대해서 확인합니다.


a. 빈도10회/min ···············NCK-20의 최대반복빈도는 9회/min이므로 NG(NCK-12이하의 기종에 한정하는

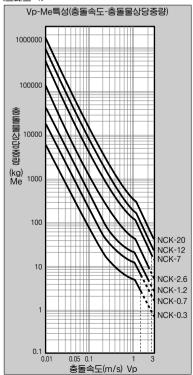
것으로 됩니다.)

b. 충돌속도1.0m/s ············전구경 공통사용가 c. 주위온도 : 옥내설비 ········전구경 공통사용가 d. 리턴시간 : 특별한규제없음 전구경 공통사용가

■ 충돌물상당중량·흡수에너지의 돌입속도 특성기개파

<그래프 5>

4 실제의 에너지를 계산합니다.


●패턴그림예 "b"의해

- a. 운동에너지: E₁ ½·m·V²½×50(kg)×1.0²(m/s)=25(J) 여기에서는 E1만으로 25J있었으므로 NCK-2.6(Emax=26J)(St=15mm)를 가선정합니다.
- b. 추력에너지: E₂=F×S=981.7(N)×0.015(m)=14.7(J)
- c. 전흡수에너지 : E=E₁+E₂=25(J)+14.7(J)=39.7(J) 여기에서 얻은 E=39.7(J)은, 먼저 가선정한 NCK-2.6 에는 흡수되지 않는 에너지이므로 1사이 큰 NCK-7로 다시 계산합니다.
- $b'.E_2=F\times S=981.7(N)\times 0.02(m)=19.6(J)$
- c'.E=E;+E2=25(J)+19.6(J)=44.6(J) 여기에서 얻은 E=44.6(J)은 NCK-7으로 흡수 가능하 므로 촛돌을 상당중량인 확인으로 ()동합니다.

5 충돌물상당 중량을 확인합니다.

- ●4와 같은 식으로 패턴그림예 "b"의해
- a. 충돌물중량 Me= $\frac{2 \cdot E}{V^z} = \frac{2 \times 44.6(J)}{1.0^z (m/s)} = 89.2 kg$
- b. NCK-7은 150(kg)이므로 계산에서 얻은 충돌물상당 중량보다 큽니다. 따라서 이 조건으로 사용하는 NCK 는 NCK-7로 OK입니다.

<그래프 4>

